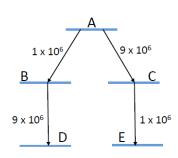
Structure of Matter – MidTerm3


May 07, 2020

Upload your paper to your dropbox, a.s.a.p. after finishing the exam.

Motivate your answers!

PROBLEM 1. [13 pnts]

- a) Calculate the proton density [per fm³] of a $^{261}_{104}$ Rf nucleus. [2 pnts]
- b) The Rutherfordium isotope ${}^{261}_{104}$ Rf can decay to nobelium (No) via α decay or to lawrencium (Lr) via β^+ decay. Give the complete formula for each of the decay reactions. (mind charge conservation) [3 pnts]
- c) As is shown in the figure a nucleus A can decay via two channels creating two granddaughter nuclei D and E. Possible decay pathways are ABD and ACE. The transition rates per second are indicated in the figure. If initially 100,000 nuclei A were produced in an experiment how many granddaughters D and E are finally produced? [2 pnts].

- d) Are both pathways equally fast? [2 pnts].
- e) Use the liquid drop model approximation to verify whether $^{64}_{30}$ Zn can or cannot decay to $^{64}_{29}$ Cu. [4 pnts]

2 $1\pi^{2}$ $(11\pi)^{2}$	a=	15.8		11.2	odd-odd
$B(N,Z) = aA - bA^{\frac{2}{3}} - \frac{dZ^2}{1} - s\frac{(N-Z)^2}{1} - \frac{\delta}{1}$	b=	18.3	δ=	0	even-odd
$A^{\frac{1}{3}}$ A $A^{\frac{1}{2}}$	d=	0.71		-11.2	even-even
	s=	23.2	all	parameters	are in MeV

PROBLEM 2. [12 pnts]

Use the generic sequence of nuclear shell filling: 1s, 1p, 1d, 2s, 1f, 2p, 1g,

- a) Which of the tabulated nuclei have nuclear spin J=7/2? [3 pnts]
- b) Which of the tabulated nuclei have even parity? [2 pnts]
- c) Hyperfine structure: consider a Sc isotope with I=4. Sc has a ${}^{2}D_{3/2}$ level as its ground electronic level. What are the possible hyperfine levels F? [2 pnts]
- d) Show that the space (number of states) spanned by I and J is the same as in the hyperfine description F. [2 pnts].
- e) Back to the nucleus: Take A<45, what is the lightest and heaviest isotope of Sc, that in principle could have a nuclear spin of 4? [3 pnts]

element		
⁴⁵ ₂₁ Sc		
⁴⁸ 22Ti		
${}^{51}_{23}V$		
⁵² ₂₄ Cr		
$^{55}_{25}Mn$		
⁵⁶ ₂₆ Fe		
⁵⁹ 27Co		
⁵⁹ 28Ni		
⁶³ 29Cu		